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Abstract

Wildlife poaching fuels the multi-billion dollar illegal wildlife trade and pushes

countless species to the brink of extinction. To aid rangers in preventing poaching in

protected areas around the world, we have developed PAWS, the Protection Assistant

for Wildlife Security. We present technical advances in multi-armed bandits and robust

sequential decision-making using reinforcement learning, with research questions that

emerged from on-the-ground challenges. We also discuss bridging the gap between

research and practice, presenting results from field deployment in Cambodia and large-

scale deployment through integration with SMART, the leading software system for

protected area management used by over 1,000 wildlife parks worldwide.

1 Introduction

The illegal wildlife trade is a multi-billion dollar industry pushing countless species to the

brink of extinction [Rosen and Smith, 2010]. Profit-driven poachers will enter protected

areas and place snares to entrap animals. To prevent poaching, rangers conduct patrols

around these protected areas to detect and confiscate snares. Unfortunately, poachers have

the upper hand; wire snares are extremely cheap to make and easy to carry, so poachers

can easily blanket the ground with snares. For example, the poachers in Srepok Wildlife

Sanctuary are prolific: park managers estimate that there are four snares for every one deer.

In contrast, Srepok has only 72 rangers to patrol its 3,750 km2 — an area roughly the size of
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Figure 1: (left) A sampling of the vast number of wire snares and elephant traps confiscated
by rangers in Srepok Wildlife Sanctuary, Cambodia. (center) Snares removed during a single
patrol. (right) Accompanying rangers on a patrol during a field visit to Srepok in 2019.

Rhode Island. Given this resource imbalance, efficiently planning ranger patrols is critical.

Our work aims to help identify the areas with greatest risk of poaching so they can remove

as many snares as possible.

Viewed algorithmically, this problem is one of optimizing limited resources. The objective

is to maximize the expected number of snares that rangers can detect, so that we can remove

those snares and prevent wildlife from getting caught. While conducting this optimization,

unfortunately, the data we have available are biased and incomplete, necessitating online

learning under uncertainty. Furthermore, we expect that poachers might eventually learn

rangers’ behavior and adapt their strategy accordingly, making need for sequential planning.

These real-world problems, and the computational solutions we have developed, demonstrate

that environmental domains such as wildlife conservation offer a range of fundamental new

research challenges related to robust planning and data-driven optimization.

Our project is called PAWS, the Protection Assistant for Wildlife Security, which has

been created in close partnership with a number of conservation organizations, including

the World Wide Fund for Nature (WWF) and Wildlife Conservation Society (WCS). We

have worked directly with rangers on the frontline, spoken extensively with conservation

managers and biodiversity experts, and traveled onsite to Cambodia (Figure 1) to meet with

park rangers and experience a wildlife patrol first-hand.

Beyond advancing fundamental research in multi-armed bandits and robust planning, our
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project also bridges the gap between research and practice, having been tested on-the-ground

in Uganda and Cambodia. We are now scaling the system worldwide through integration

with SMART, the leading software system for protected area management used by over 1,000

wildlife parks around the world. Although SMART records significant amounts of historical

data, its current capabilities are limited to managing data; the missing link is to leverage

that data to inform patrol strategy. Our project builds that link, aiding park managers with

patrol planning by identifying the most critical areas to patrol, which are either the areas

with greatest poaching risk or where we have the greatest uncertainty.

We organize this paper as follows. Beginning with an overview of the domain in Section 2,

we underline the urgency of poaching prevention and describe the three parks we work with.

In Section 3 summarize the main technical contributions of this project. We then delve

into more technical details, beginning with a machine learning approach to predict poaching

hotspots in Section 4. In Section 5, we take a deep-dive into algorithmic details of an online

learning approach designed for learning and planning in budgeted, combinatorial settings.

Our algorithm, LIZARD, offers general theoretical work on multi-armed bandits where we

prove that our algorithm improves upon existing regret bounds while also offering a practical

approach to patrol planning in data-scarce settings. In Section 6, we consider the robust

planning problem, presenting an algorithm to plan sequential patrols under environment

uncertainty. Our algorithm, MIRROR, is the first reinforcement learning–based algorithm

to calculate minimax regret–optimal policies. From there, we turn to deployment, first

describing field tests in Section 7 then scaling up deployment to SMART in Section 8. We

reflect on lessons learned from deployment in Section 9 before concluding in Section 10.

2 Wildlife Poaching Crisis

Illegal wildlife poaching is an international problem that threatens biodiversity, ecological

balance, and ecotourism [Cooney et al., 2017]. Countless species are being poached to near-
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extinction: the ivory, horn, and skin of exotic species such as elephants, rhinos, and tigers

render them targets for illegal trade of luxury products and medicinal applications [Chase et

al., 2016; Spillane, 2015]; other animals like wild pigs and apes are hunted as bushmeat for

protein [Warchol, 2004]. Even when their habitats become designated wildlife conservation

areas, these animals continue to be at risk due to lack of sufficient resources to protect them

from poachers. Timely detection and deterrence of illegal poaching activities in protected

areas are critical to combating illegal poaching.

To combat poaching, park rangers conduct patrols through protected areas and use GPS

trackers to record their observations. They confiscate animal traps, rescue live animals caught

in snares, and monitor wildlife populations [Critchlow et al., 2016]. Their GPS trackers are

then synced to the SMART database system [SMART, 2013] to manage their many years of

wildlife crime data. However, the data are biased due to the inability of rangers to detect all

instances of poaching. There are additional data collection issues due to the nature of these

patrols: rangers may have to address an emergency in the field, such as hearing a poacher

in the distance, and lose the opportunity to record snares or bullet cartridges they found.

Figure 2: Location of
MFNP and QENP in
Uganda.

In this paper, we highlight our work with rangers and con-

servation specialists at Murchison Falls National Park (MFNP)

and Queen Elizabeth National Park (QENP) in Uganda, and

Srepok Wildlife Sanctuary (SWS) in Cambodia. Combined,

these protected areas span over 11,800 sq. km, an area larger

than the island country of Jamaica. MFNP and QENP are

critically important for ecotourism and conservation in Uganda

(Fig. 2), and provide habitat to elephants, giraffes, hippos, and

lions [Critchlow et al., 2015]. SWS is the largest protected area

in Southeast Asia and is home to elephants, leopards, and banteng. SWS once housed a na-

tive population of tigers, but they fell prey to poaching; the last tiger was observed in 2007.

In the intervening decade, SWS has been identified as the most promising site in South-
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east Asia for tiger reintroduction [Gray et al., 2017]. Effectively managing the landscape by

reducing poaching will be critical to successful tiger reintroduction in Srepok.

3 Overview of Project and Contributions

To help combat poaching, we have developed the Protection Assistant for Wildlife Security

(PAWS) as a data-driven approach to identify areas at high risk of poaching throughout

protected areas and compute optimal patrol routes. The techniques we have built to help

plan patrols for wildlife conservation focus on the central theme of data-driven approaches

to optimizing scarce resources in the face of uncertainty.

This PAWS project is a collaboration between computer scientists and conservation prac-

titioners at the World Wide Fund for Nature (WWF), Wildlife Conservation Society (WCS),

and Uganda Wildlife Authority (UWA). Joint discussions took the form of countless video

calls — monthly leading up to and during field tests then once a week over the course of

6 months during SMART deployment — along with reciprocal site visits. The computer

science researchers spent a week in Cambodia to visit Srepok, meet with park managers,

and accompany park rangers on a motorbike patrol to better understand on-the-ground con-

straints. In turn, the conservation practitioners visited Harvard in fall 2019 for a two-day

workshop to discuss ongoing challenges in protected area management and ideate potential

computational approaches.

Here, we briefly summarize the primary technical thrusts of this project.

Machine learning and risk-averse planning We first focus on data-rich parks that have

plentiful historical data that park managers can leverage to understand poacher behavior

and plan patrols. The challenge is to make sense of this trove of data to determine how

we can optimally allocate our scarce teams of resources. We first leverage this data to

build accurate predictive models, focusing on quantifying uncertainty, then leverage that

uncertainty to plan risk-averse patrols for rangers [Xu et al., 2020]. Specifically, we leverage
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uncertainty information from Gaussian processes in an ensemble method designed for class

imbalance. We then incorporate the uncertainty of each prediction into a mixed integer

linear program (MILP) to determine the optimal patrol strategy, using a scaling parameter

to set our threshold for risk. The flexibility of the MILP enables us to accommodate path

constraints and other domain-generated constraints, such as starting and ending each patrol

by a patrol post or crossing by essential regions for ecological monitoring. We show that

planning risk-aware patrols enables us to increase detection of snares by an average of 30%.

Multi-armed bandits for online learning Unfortunately, the majority of parks do not

have abundant and accurate historical data that they can leverage. Recognizing that existing

computational techniques make unrealistic assumptions on availability of data (e.g., years

of patrol data) or time (e.g., infinite time horizons), we focus on patrol planning for these

data-scarce settings. We seek to plan dual-mandate patrols to simultaneously detect illegal

activities and collect valuable data to improve our predictive model and achieve higher long-

term reward [Xu et al., 2021a].

We use a multi-armed bandit formulation, where each action represents a patrol strategy,

to balance exploration of infrequently visited regions and exploitation of known hotspots.

However, traditional bandit approaches compromise short-term performance for long-term

optimality, resulting in animals poached and forests destroyed. We develop a novel bandit

algorithm, LIZARD, which speeds up performance by leveraging smoothness in the reward

function and decomposability of actions. Combining these insights reveals a synergy between

Lipschitz-continuity and decomposition as each aids the convergence of the other. With this

approach, we transcend the proven lower regret bound of Lipschitz bandits and generalize

combinatorial bandits to continuous spaces. On top of achieving theoretical no-regret, we also

demonstrate that our LIZARD algorithm achieves better short-term performance empirically,

increasing the usefulness of this approach in practice — particularly in high-stakes settings

where we cannot compromise short-term reward.
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Robust sequential decision-making In parks with extensive history of poaching, we

expect the poachers to be sophisticated, with the ability to respond to ranger patrols over

time. Conservation biologists understand this behavior to be primarily one of deterrence,

where increased ranger patrols deter poachers from returning to one region [Moore et al.,

2018]. This deterrence effect of patrols on adversaries’ future behavior makes patrol planning

a sequential decision-making problem. However, sequential planning techniques such as

reinforcement learning (RL) assume an accurate simulator of the environment to enable this

planning, but realistically we cannot expect our model to be perfect, given challenges of on-

the-ground patrols. Thus, our goal is to plan robust patrols under environment uncertainty.

We focus on robust sequential patrol planning following the minimax regret criterion,

formulating the problem as a game between the ranger and nature who controls the parameter

values of the poacher behavior [Xu et al., 2021b]. Our solution builds upon the double

oracle approach [McMahan et al., 2003], using two reinforcement learning–based oracles and

solving a restricted, zero-sum game considering limited defender strategies and parameter

values. We propose MIRROR, a framework to calculate minimax regret–optimal policies

using RL for the first time. We prove that MIRROR converges to an ε–optimal strategy in a

finite number of iterations, overcoming the difficulty of continuous state and action spaces,

and empirically evaluate our algorithm on real poaching data. MIRROR improves existing

techniques in robust policy planning by enabling the use of minimax regret instead of the

standard maximin reward criterion, which tends to be overly conservative.

4 Predicting Poaching Hotspots

Many protected areas have years of historical patrols, which are often recorded on SMART

without effective approaches to best leverage this data for future patrol plans. We begin

with a supervised learning approach to predict poaching hotspots.

Learning the poachers’ behavior is a challenging machine learning problem since the
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(a) Murchison Falls National
Park, Uganda

(b) Queen Elizabeth National
Park, Uganda

(c) Srepok Wildlife Sanctuary,
Cambodia

Figure 3: Three protected areas we work with in this paper. Visualized is the relative
historical patrol effort for each protected area, calculated as kilometer patrolled per 1×1 km
cell. Note that patrol effort is unevenly distributed around the park and many areas have
never been patrolled (in white), making clear the need to proactively add data.

wildlife crime datasets are typically extremely imbalanced, with up to 99.6% negative labels;

negative labels indicating absence of illegal activity are not reliable due to the difficulty of

detecting well-hidden poaching signs in the forest; historical poaching observations are not

collected thoroughly and uniformly, resulting in biased datasets; and poaching patterns and

landscape features vary from one protected area to another, so a universal predictive model

cannot be recommended. A unifying theme is data imbalance and uncertainty.

We note that the ultimate goal is to prescribe effective patrol routes for rangers to

maximize the number of snares removed—corresponding to animal lives saved. Thus, rangers

are incentivized to conduct patrols with higher certainty of detecting snares. This domain

insight inspired us to optimize the patrol plans by measuring the predictive uncertainty in

our model. To do so, we use Gaussian processes to quantify uncertainty in predictions of

poaching risk and exploit these uncertainty metrics in our optimization problem to increase

the robustness of our prescribed patrols.

4.1 Building a Reliable Predictive Model

To understand poacher behavior, we leverage observations from historical ranger patrols.

Patrol observations come from SMART conservation software, which records the GPS loca-
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Table 1: About the data available from each park

MFNP QENP SWS

Number of features 22 19 21
Number of 1× 1 km cells 4,613 2,522 3,750
Number of points (6 years) 18,254 19,864 43,269
Percent positive labels 14.3% 4.7% 0.36%
Avg. patrol effort (km/cell) 1.75 2.08 3.96

tion of each observation along with date and time, patrol leader, and method of transport.

Rangers enter their observations: animals or humans spotted; signs of illegal activity such

as campsites or cut trees; and signs of poaching activity such as firearms, bullet cartridges,

snares, or slain animals. We categorize these observations into poaching and non-poaching.

Additionally, we rebuild historical patrol effort from these observations by using sequential

waypoints to calculate patrol trajectories.

We then incorporate geospatial data about the park. Data specialists at WWF, WCS, and

UWA provide us with relevant GIS shapefiles and GeoTIFF files. The features differ between

parks, but include terrain features such as rivers, elevation maps, and forest cover; landscape

features such as roads, park boundary, local villages, and patrol posts; and ecological features

such as animal density and net primary productivity. We use these static features to build

data points in our predictive model, either as direct values (such as slope or animal density)

or as distance values (such as distance to nearest river).

We build the datasets based on the historical patrol observations. The records are dis-

cretized into a set of T time steps and N locations. Each feature vector xt,n contains multiple

time-invariant geospatial features associated with each location (described above) and one

time-variant covariate: ct−1,n, the amount of patrol coverage in cell n during the previous

time step t− 1, which models the potential deterrence effect of past patrols.

The labels in the predictive classifier are a binary indicator of whether illegal poaching

activity was observed in a cell at a given time step. We assign a positive label y = 1 to the

cell if rangers observed poaching-related activity during that time period and negative label
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y = 0 if they did not. The data characteristics for each park are described in Table 1

4.2 Predictions with Uncertainty

To account for class imbalance and unreliable negative labels, we use iWare-E, an ensemble

method designed for imperfect observations [Gholami et al., 2018]. We enhance iWare-

E to explicitly reason about uncertainty of the predictions using Gaussian process (GP)

classifiers as the weak learners. GPs are given by the function: f(xi) ∼ GP (µ(X),Σ(X)),

with mean µ(X) and covariance matrix Σ(X). By formally defining the covariance functions,

we can use GPs to compute a variance value for each prediction based on confidence from

the training data.

Figure 4: Prediction of
poaching risk through-
out Srepok.

See Figure 4 for an example of the resulting predictions. In

evaluations on the historical park data, we see that our approach

consistently improves AUC by 0.100 on average across parks. More

importantly, we later describe our on-the-ground evaluations in the

form of field tests in Uganda and Cambodia. Additionally, based on

this poaching risk and the uncertainty estimates, we can compute

an optimal patrol plan by solving a mixed integer linear program to

plan patrol routes, incorporating path constraints or other restric-

tions by parks, such as constraining the patrol to begin and end at

a patrol post.

5 Patrol Planning in Data-Scarce Parks

The above results on building a reliable predictive model are promising, but rely on having

plentiful historical data from which to train a machine learning model. However, many

protected areas lack adequate and unbiased past patrol data, disabling us from learning a

reasonable adversary model in the first place [Moreto and Lemieux, 2015]. As one of many
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examples, Bajo Madidi in the Bolivian Amazon was newly designated as a national park in

2019 [Berton, 2020]. The park is plagued with illegal logging, and patrollers do not have

historical data from which to make predictions. Rangers do not want to spend patrol effort

solely on information gathering; they must simultaneously maximize detection of attacks.

As our work on poaching prediction gets deployed on an ever-larger scale in hundreds of

protected areas around the world, addressing this information-gathering challenge is crucial.

Motivated by these practical needs, we focus on conducting dual-mandate patrols, with

the goal to simultaneously detect illegal activities and collect valuable data to improve our

predictive model, achieving higher long-term reward. The key challenge is the exploration–

exploitation tradeoff: whether to follow the best patrol strategy indicated by historical data

or conduct new patrols to get a better understanding of the attackers. Unfortunately, existing

bandit approaches require unrealistically long time horizons to achieve good performance.

In the real world, these initial losses are less tolerable and can result in wildlife loss and

stakeholders abandoning such patrol-assistance systems. In response, we provide an algo-

rithm with infinite horizon guarantees and also empirically show strong performance in the

short term. As we are designing this system for future deployment, it is critical to account

for these practical constraints.

We address real-world characteristics of green security domains to design dual-mandate

patrols, prioritizing strong performance in the short term as well as long term. Concretely,

we introduce LIZARD, a bandit algorithm that accounts for decomposability, Lipschitz-

continuity, monotonicity, and historical data present in the poaching prevention domain to

produce a more effective online learning algorithm that achieves faster empirical performance

and stronger theoretical guarantees.

5.1 Problem Formulation

The protected area for which we must plan patrols is discretized into N targets, each associ-

ated with a feature vector ~yi ∈ RK which is static across the time horizon T . The K features
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include geospatial characteristics such as distance to river, forest cover, animal density, and

slope. In each round, the rangers determine an effort vector ~β = (β1, . . . , βN) which specifies

the amount of effort to spend on each target. The park has a budget B for total effort, i.e.,∑
i βi ≤ B. In practice, βi may represent the number of hours spent on foot patrolling in

target i. The planned patrols have to be conveyed clearly to the human patrollers on the

ground to then be executed [Plumptre et al., 2014]. Thus, an arbitrary value of βi may be

impractical. For example, we may ask the patrollers to patrol in an area for 30 minutes,

but not 21.3634 minutes. Therefore, we enforce discretized patrol effort levels, requiring

βi ∈ Ψ = {ψ1, . . . , ψJ} for J levels of effort.

Poachers will place snares in some targets. The reward of a patrol corresponds to the

total number of targets where attacks were detected. Let the expected reward of a patrol

vector ~β be µ(~β). Our objective is to specify an effort vector ~β(t) for each timestep t in

an online fashion to minimize regret with respect to the optimal effort vector ~β∗ against a

stochastic adversary, where regret is defined as Tµ(~β∗)−
∑T

tl=1 µ(~β(t)).

In practice, the likelihood of a ranger detecting an attack is dependent on the amount

of patrol effort exerted. Thus, spending more time means the human patrollers can check

the whole region more thoroughly and are more likely to detect snares. We represent the

ranger’s expected reward at target i as a function µi(βi) ∈ [0, 1]. We define random variables

X
(t)
i as the observed reward (attack or no attack) from target i at time t. Then X

(t)
i follows

a Bernoulli distribution with mean µi(β
(t)
i ) with effort β

(t)
i .

5.2 Domain Characteristics

We leverage the following characteristics of poaching domains to direct our approach.

Decomposability The overall expected reward for the ranger is decomposable across

targets and additive. For executing a patrol with effort ~β across all targets, the expected

composite reward is a function µ(~β) =
∑N

i=1 µi(βi).

Lipschitz-continuity The expected reward at target i is µi(βi), which is dependent on
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effort βi. Furthermore, the expected reward depends on the features ~yi of that target, that

is, µi(βi) = µ̃(~yi, βi) for all i. As we showed previously, machine learning models (which rely

on assumptions of Lipschitz continuity) to predict poaching patterns perform well. Thus,

we assume that the reward function µ̃(·, ·) is Lipschitz-continuous in feature space as well as

across effort levels. That is, two distinct targets in the protected area with identical features

will have identical reward functions, and two targets a and b with features ~ya, ~yb and effort

βa, βb have rewards that differ by no more than

|µ̃(~ya, βa)− µ̃(~yb, βb)| ≤ L · D((~ya, βa), (~yb, βb)) (1)

for some Lipschitz constant L and distance function D, such as Euclidean distance. Hence,

the composite reward µ(~β) is also Lipschitz-continuous.

Monotonicity The more effort spent on a target, the higher the expected reward as

our likelihood of finding a snare increases. That is, we assume µ(βi) is monotonically non-

decreasing in βi. Additionally, we assume that zero effort corresponds with zero reward

(µi(0) = 0), as rangers cannot prevent attacks on targets they do not visit.

Historical data Finally, many conservation areas have data from past patrols, which we

use to warm start the online learning algorithm.

5.3 LIZARD Online Learning Algorithm

Standard bandit algorithms suffer from the curse of dimensionality: the set of arms would

be ΨN , which has size JN . Thus, we cast the problem as a combinatorial bandit [Chen

et al., 2016]. At each iteration, we choose a patrol strategy ~β that satisfies the budget

constraint and observe the patrol outcome of each target i under the chosen effort βi. An

arm is one effort level βi on a specific target i; a super arm is ~β, a collection of N arms.

By tracking decomposed rewards, we only need to track observations from NJ arms. We

now maintain exponentially fewer samples, but the number of arms is still prohibitively
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Algorithm 1: LIZARD

1 Inputs: Number of targets N , time horizon T , budget B, discretization levels Ψ,
target features ~yi

2 n(i, ψj) = 0, reward(i, ψj) = 0 ∀i ∈ [N ], j ∈ [J ]
3 for t = 1, 2, . . . , T do
4 Compute UCBt using Eq. 4

5 Solve P(UCBt, B,N, T ) to select super arm ~β

6 Observe rewards X
(t)
1 , X

(t)
2 , . . . , X

(t)
n

7 for i = 1, 2, . . . , N do

8 reward(i, βi) = reward(i, βi) +X
(t)
i

9 n(i, βi) = n(i, βi) + 1

large. WTo address this challenge, we leverage feature similarity between arms to speed up

learning, demonstrating the synergy between decomposability and Lipschitz-continuity. We

now show how to transfer knowledge between arms with similar effort levels and features.

5.3.1 Upper Confidence Bounds with Similarity

We take an upper confidence bound (UCB) approach where the rewards are tracked sepa-

rately for different arms. We show that we can incorporate Lipschitz-continuity of the reward

functions into the UCB of each arm to achieve tighter confidence bounds.

Let µ̄t(i, j) = rewardt(i, ψj)/nt(i, ψj) be the average reward of target i at effort ψj given

cumulative empirical reward rewardt(i, ψj) over nt(i, ψj) arm pulls. The confidence radius

is defined as

rt(i, j) =

√
3 log(t)

2nt(i, ψj)
. (2)

We distinguish between UCB and a term we call selfUCB. The selfUCB of an arm

(i, j) representing target i with effort level j is the UCB of an arm based only on its own

observations, given by

selfUCBt(i, j) = µ̄t(i, j) + rt(i, j) . (3)
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Figure 5: The Lipschitz assumption enables us to prune confidence bounds. We show the
impact of each selfUCBs on the UCBs of other arms in effort space of target i. The solid
brackets represent the selfUCBs. The dashed lines represent the bounds imposed by each
arm on the rest of the space. The shaded green region covers the potential value of the
reward function at different levels of effort. We visualize the additive effect of (a) Lipschitz-
continuity, (b) zero effort yields zero reward, and (c) monotonicity. Note that these plots
demonstrate UCBs for one target and that Lipschitz continuity also applies across targets
based on feature similarity.

This definition of selfUCB corresponds with the standard interpretation of confidence

bounds from UCB1 [Auer et al., 2002]. The UCB of an arm is then the minimum of the

bounds of all selfUCBs as applied to the arm, determined by adding the distance between

arm (i, j) and all other arms (u, v) to the selfUCB:

UCBt(i, j) = min
u∈[N ]
v∈[J ]

{selfUCBt(u, v) + L · dist} (4)

dist = max{0, ψv − ψj}+D(~yi, ~yu)

which exploits Lipschitz continuity between the arms. See Fig. 5 for a visualization. The

distance between two arms depends on the similarity of their features and effort. The

first term of dist considers similarity of effort level (Fig. 5a); the second considers feature

similarity between targets according to distance function D. We define UCBt(i, 0) = 0 for

all i ∈ [N ] due to the assumption that zero effort yields zero reward (Fig. 5b). To address

the monotonically non-decreasing reward across effort space, we constrain the first term of

dist to be nonnegative (Fig. 5c).

15



5.3.2 Super Arm Selection

With the computed UCBs, the selection of super arms (patrol strategies) is a knapsack

optimization problem. We aim to maximize the value of our sack (sum of the UCBs) subject

to a budget constraint (total effort), solved with the following integer linear program P .

max
z

∑
i∈[N ]

∑
j∈[J ]

zi,j ·UCBt(i, j) (P)

s.t. zi,j ∈ {0, 1} ∀i ∈ [N ], j ∈ [J ]∑
j∈[J ]

zi,j = 1 ∀i ∈ [N ]

∑
i∈[N ]

∑
j∈[J ]

zi,jψj ≤ B

There is one auxiliary variable zi,j, constrained to be binary, for each level of patrol effort

for each target. Setting zi,j = 1 means we exert ψj effort on target i. The constraints set

βi by requiring that we pull one arm per target (which may be the zero effort arm βi = 0)

and mandate that we stay within budget. This integer program has NJ variables and N + 1

constraints. Pseudocode for the LIZARD algorithm is given in Algorithm 1.

5.4 Regret Analysis

We provide a regret bound for Algorithm 1 with fixed discretization (Sec. 5.4.1), which is

useful in practice but cannot achieve theoretical no-regret due to the discretization factor.

Thus, we then offer Algorithm 2 with adaptive discretization to achieve no-regret (Sec. 5.4.2),

showing that there is no barrier to achieving no regret in practice other than the need for

fixed discretization in operationalizing our algorithm in the field. Our regret bound improves

upon that of the zooming algorithm of Kleinberg et al. [2019] for all problem sizes N > 1.

In fact, the regret bound for the zooming algorithm is a provable lower bound; we are able

to improve this lower bound through decomposition (Sec. 5.4.3). Furthermore, we extend
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the line of research on combinatorial bandits, generalizing the CUCB algorithm from Chen

et al. [2016] to continuous spaces.

5.4.1 Fixed Discretization

Theorem 1. Given the minimum discretization gap ∆, the regret bound of Algorithm 1

with selfUCB is

Reg∆(T ) ≤ O
(
NL∆T +

√
N3∆−1T log T +N2L∆−1

)
. (5)

Proof sketch. The regret in Theorem 1 comes from (i) discretization regret in the first term

of Eq. 5 and (ii) suboptimal arm selections in the last two terms. The discretization regret is

due to inaccurate approximation caused by discretization, where the error can be bounded

by rounding the optimal arm selection and fractional effort levels to their closest discretized

levels. The suboptimal arm selections are due to insufficient samples across all discretized

subarms and have sublinear regret in terms of T .

5.4.2 Adaptive Discretization

With Theorem 1 we observe that the barrier to achieving no-regret is the discretization

error which is linear in all terms, which brings us to adaptive discretization. Adaptive

discretization is less practical on the ground, but would be useful in other bandit settings

outside ranger patrols where we could more precisely spend our budget, such as facility

location. As shown in Algorithm 2, we begin with a coarse patrol strategy, beginning with

binary decisions on whether or not to visit each target, then gradually progress to a finer

discretization.

Theorem 2. The regret bound of Algorithm 2 with selfUCB is given by

Reg(T ) ≤ O
(
L

4
3NT

2
3 (log T )

1
3

)
. (6)
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Algorithm 2: Adaptively Discretized LIZARD

1 Inputs: Number of targets N , time horizon T , budget B, target features ~yi,
Lipschitz constant L

2 Discretization levels Ψ = {0, 1} , gap ∆ = 1

3 Tk = N
L223k

log N
L223k

∀k ∈ N ∪ {0}
4 n(i, ψj) = 0, reward(i, ψj) = 0 ∀i ∈ [N ], j ∈ [J ]
5 for t = 1, 2, . . . , T do

6 if t >
∑k−1

j=0 Tj then

7 Set ∆ = 2−k and Ψ = {0,∆, ..., 1}
8 Compute UCBt using Eq. 4

9 Solve P(UCBt, B,N, T ) to select super arm ~β

10 Observe rewards X
(t)
1 , X

(t)
2 , . . . , X

(t)
n

11 for i = 1, 2, . . . , N do

12 reward(i, βi) = reward(i, βi) +X
(t)
i

13 n(i, βi) = n(i, βi) + 1

Proof sketch. To alleviate the discretization error, we adaptively reduce the discretization

gap. We run each discretization gap ∆ for T∆ = N
L2∆3 log N

L2∆3 time steps to make the

discretization error and the selection error of the same order. We then start over with a finer

discretization ∆/2 to make the discretization error smaller. After summing the regret from

all different phrases of discretization, we achieve sublinear regret as shown in Eq. 6.

Under reasonable problem settings, T dominates all other variables, so the regret in

Theorem 2 is effectively of order O(T
2
3 (log T )

1
3 ). Our regret bound matches the bound of the

zooming algorithm with covering dimension N = 1. Our setting is instead N -dimensional,

falling into a space with covering dimension d = N . The regret bound for a metric space

with covering dimension d is O(T
d+1
d+2 (log T )

1
d+2 ), which approaches Õ(T ) as d approaches

infinity [Kleinberg et al., 2008]. Thus, our regret bound improves upon that of the zooming

algorithm for any N > 1. Theorem 2 signifies that LIZARD can successfully decouple the

N -dimensional metric space into individual sub-dimensions while maintaining the smaller

regret order, showcasing the power of decomposibility.
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5.4.3 Tightening Confidence Bounds

We have so far offered regret bounds to account for decomposability and Lipschitz-continuity

across effort space. We now guarantee that the regret bounds continue to hold with Lipschitz-

continuity in feature space, monotonicity, and historical information. We first look at how

prior knowledge affects the regret bound in the combinatorial bandit setting:

Theorem 3. Consider a combinatorial bandit problem. If the bounded smoothness function

given is f(x) = γxω for some γ > 0, ω ∈ (0, 1] and the Lipschitz upper confidence bound is

applied to all m base arms, the cumulative regret at time T is bounded by

Reg(T ) ≤ 2γ

2− ω
(6m log T )

ω
2 · T 1−ω

2 +

(
π2

3
+ 1

)
mRmax

where Rmax is the maximum regret achievable.

Theorem 3 matches the regret of the CUCB algorithm [Chen et al., 2016], generalizing

combinatorial bandits to continuous spaces. Theorem 3 also allows us to generalize Theorems

1 and 2 to our setting with a tighter UCB from Lipschitz-continuity, which yields Theorem 4:

Theorem 4. The regret bound of Algorithm 1 with UCB is

Reg∆(T ) ≤ O
(
NL∆T +

√
N3∆−1T log T +N2L∆−1

)
(7)

and the regret bound of Algorithm 2 with UCB is

Reg(T ) ≤ O
(
L

4
3NT

2
3 (log T )

1
3

)
. (8)

Finally, when historical data is used, we can treat all the historical arm pulls as previous

arm pulls with regret bounded by the maximum regret Rmax.This yields a regret bound with

a time-independent constant and is thus still sublinear, achieving no-regret. Taken together,

these capture all the properties of the LIZARD algorithm, so we can state:
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Figure 6: Map of Srepok with a 5 × 5 km region highlighted and the real-world reward
functions of the corresponding 25 targets.

Corollary 5. The regret bounds of Algorithm 1 and Algorithm 2 still hold with the inclusion

of decomposability, Lipschitz-continuity, monotonicity, and historical data.

Theorem 4 highlights the interplay between Lipschitz-continuity and decomposition. The

zooming algorithm achieves the provable lower bound on regret Õ(T
N+1
N+2 ) [Kleinberg, 2004].

The regret that we achieve improves upon that lower bound for all N > 1, which is only

possible due to the addition of decomposition.

5.5 Empirical Evaluation

Conducting experiments using poaching data from Srepok Wildlife Sanctuary, we validate

that the addition of decomposition and Lipschitz-continuity not only improves our theoret-

ical guarantees but also leads to stronger empirical performance. We show that LIZARD

(Algorithm 1) learns effectively within practical time horizons.

We consider a patrol planning problem with N = 25 or 100 targets (each a 1 sq. km grid

cell), representing the region reachable from a single patrol post (Figure 6), and time horizon

T = 500 representing a year and a half of patrols. We use 50 timesteps of historical data,

approximately two months of patrol, as we focus on achieving strong performance in parks

with limited historical patrols. We compare to three baselines: CUCB [Chen et al., 2016],

zooming [Kleinberg et al., 2019], and MINION [Gholami et al., 2018]. Zooming is an online

learning algorithm that ignores decomposability, whereas CUCB uses decomposition but

ignores similarity between arms. We use exploit history as a naive baseline, which greedily
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Figure 7: Performance, measured in terms of percentage of reward achieved between
optimal − exploit, over time. Shaded region shows standard error. Setting shown is
N = 25, B = 1. LIZARD (green) performs best.

exploits historical data with a static strategy. We compute the optimal strategy exactly by

solving a mixed-integer program over the true piecewise-linear reward functions, subject to

the budget constraint.

Fig. 7 shows performance on real-world data from Srepok, evaluated as the reward

achieved at timestep t, where the reward of historical exploit is 0 and of optimal is 1.

The performance of LIZARD significantly surpasses that of the baselines throughout, with

LIZARD providing a particular advantage over CUCB in the early rounds.

6 Robust planning under uncertainty

In parks with extensive history of poaching, we expect the poachers to be sophisticated,

with the ability to respond to ranger patrols over time. Conservation biologists understand

this behavior to be primarily one of deterrence, where increased ranger patrols deter poach-

ers from returning to one region [Moore et al., 2018]. This deterrence effect of patrols on

adversaries’ future behavior makes patrol planning a sequential decision-making problem.

However, sequential planning techniques such as reinforcement learning (RL) assume an

accurate simulator of the environment to enable this planning, but we cannot expect our

environmental model to be perfect, given challenges of on-the-ground patrols. Thus, our
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goal is to plan robust patrols under environment uncertainty.

We focus on robust sequential patrol planning following the minimax regret criterion,

formulating the problem as a game between the ranger and nature who controls the parameter

values of the poacher behavior [Xu et al., 2021b]. Our solution builds upon the double

oracle approach [McMahan et al., 2003] uses two reinforcement learning–based oracles and

solves a restricted, zero-sum game considering limited defender strategies and parameter

values. We propose MIRROR, a framework to calculate minimax regret–optimal policies

using RL for the first time. We prove that MIRROR converges to an ε–optimal strategy in a

finite number of iterations, overcoming the difficulty of continuous state and action spaces,

and empirically evaluate our algorithm on real poaching data. MIRROR improves existing

techniques in robust policy planning by enabling the use of minimax regret instead of the

standard maximin reward criterion, which tends to be overly conservative.

7 Deployment: Evaluating PAWS with Field Tests

Figure 8: (left) Regions in SWS used for field tests in December 2018. High-, medium-, and
low-risk regions are shown in red, yellow, and green, respectively. Blue circles are patrol
posts; the rivers and roads are also displayed. (right) Rangers in Srepok Wildlife Sanctuary
with snares they removed during our field tests in December 2018. Photo: WWF Cambodia.

We found our algorithms to perform well in experiments on historical park data, but

we also want to consider how they fare on the ground to ensure that the results are useful

to existing conservation efforts. To do so, we conducted a series of field tests in Uganda

and Cambodia, where we demonstrate the ability of our algorithms to uncover previously
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Figure 9: Field test results from deployment in Murchison Falls National Park in Uganda
and Srepok Wildlife Sanctuary in Cambodia. The results demonstrate the clear ability of
our algorithm to effectively discriminate between relative poaching risk throughout the park,
as rangers found many more snares in high-risk regions than in medium- or low-risk ones.

unknown poaching hotspots. The strong performance during these tests has motivated a

broader collaboration to deploy our predictive model into widely used conservation software.

7.1 Field Test Setup

Partnering with the Uganda Wildlife Authority and WWF Cambodia to test the predictions

made by our machine learning model, we conducted field tests in Murchison Falls National

Park and Srepok Wildlife Sanctuary beginning in 2018. Each month, we generated predic-

tions using the predictive learning algorithm described above and classified our recommended

areas into three risk groups (low, medium, and high). These areas were all infrequently pa-

trolled in the past, to ensure we test the predictive power of our algorithms rather than

relying on past patterns. To reduce bias in data collection, we did not reveal the risk groups

to rangers before conducting the experiments.

SWS experiences high seasonality, where many rivers dry up during the dry season,

inspiring us to train our model based only on data from dry months (November through

April), using a two-month discretization to get three temporal points per year. Using data

from January 2015 through April 2018, we made predictions on the November–December

2018 time period for the first set of field tests in December, and repeated for subsequent
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months. Using these predictions of poaching risk for 1 × 1 km cells, we averaged the risk

predictions over the adjacent cells by convolving the risk map to produce 3 × 3 km blocks.

We then discarded all blocks with historical patrol effort above the 50th percentile, to ensure

we were assessing the ability of our model to make predictions in regions with limited data.

From this set of valid blocks, we identified high-, medium-, and low-risk areas by considering

blocks with risk predictions within the 80–100, 40–60, and 0–20 percentile. In selecting

regions for these field tests we had to also accommodate constraints by the rangers, such

as each site region had to be within 5 km from the nearest water source and reasonable

accessible from a road. In total, we selected five 3× 3 km blocks from each of the three risk

categories, shown in Fig. 8.

To execute these tests, we gave the park rangers GPS coordinates of the center of each

block and asked them to target those regions during their patrols. Again, we kept the

study as a blind experiment by not revealing the risk classifications to rangers in advance.

Beginning in December 2018, 72 park rangers in teams of eight conducted patrols throughout

the park, focusing on our suggested areas.

7.2 Field Test Results

Figure 9 visualizes the key results of our field tests, comparing the number of incidences of

poaching activity rangers observed in each region normalized by the number of cells patrolled.

Our predictive model effectively evaluates the poaching threat for different regions across

the park, with marked success at discriminating between high-risk and low-risk areas. In

Srepok, park rangers found absolutely no poaching activity in low-risk areas, despite exerting

a comparable amount of effort in those regions. This result suggests that revealing our risk

predictions to them would grant them valuable insight into their patrol strategy so as to more

effectively allocate their limited resources, as they can confidently spend less time patrolling

these low-risk regions.

During a single month in Srepok Wildlife Sanctuary in Cambodia patrolling high-risk
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regions alone, rangers detected and removed over 1,000 snares — a nearly fivefold increase

of an average month. These tests demonstrate that our algorithms perform well not just in

the digital tests that we simulate but also on the ground.

8 Deployment: PAWS Scales to 1000+ Parks

Figure 10: Our PAWS system has been inte-
grated with SMART, used in over 1,000 pro-
tected areas worldwide.

Based on the success of our field tests and

reciprocal enthusiasm from our collabora-

tors, we are making our predictive algo-

rithms broadly available by integrating our

research advances into established software

to scale most effectively. We have integrated

our PAWS machine learning model into the

SMART software, the premier software for wildlife conservation managed by a consortium of

nine leading conservation organizations. This integration help democratize AI and enables

us to contribute more broadly to the global effort to protect wildlife from poaching, bringing

PAWS to protected areas across 60 countries that are using SMART (Figure 10). We are

currently in a round of alpha tests to evaluate these predictions in a larger set of parks; con-

servation managers in Nigeria, Liberia, Zambia, Kenya, and Malaysia have all been running

our system and using these predictions to guide their patrol planning.

9 Deployment: Lessons Learned

This research has been conducted in close collaboration with domain experts whose insights

have shaped the trajectory of our project. We highlight here a few important lessons learned

from this long-term partnership with conservation organizations WWF, WCS, and UWA.

Begin with simple computational approaches. We could not begin by directly imple-
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menting a bandits algorithm. Instead, we had to begin with the simplest machine learning

strategy, supervised learning, to iterate through the data processing step and understand

what would be feasible on the ground. These simple approaches are often easier to eval-

uate, too. This initial phase is also essential to build relationships and establish a shared

language between researchers and practitioners, which for us took the form of weekly or

monthly meetings at every stage of the process (project proposal, algorithm design, field

testing, deployment).

Incremental deployment before designing ambitious projects. We started out deployments

on the ground with data-rich parks and well-resourced parks who had GIS specialists, well-

trained rangers, and ranger managers who had a strong understanding of technology and

the SMART database. Only after piloting several months of field tests in these settings did

we (and our collaborators) feel comfortable taking the leap to integration with SMART.

Integrate domain expertise into algorithm design. The insight that poaching activity is

subject to seasonality also resulted from discussions with park rangers, which inspired us

to break up the SWS data into rainy vs. dry season and generate those predictive models

separately. Our predictive model identified higher poaching risk in the north during dry

season and south during rainy season, which garnered immediate positive feedback from

the rangers: this aligned with their experiences on the ground and understanding of the

accessibility of the terrain.

Consider real-world constraints as research challenges, not limitations. Our initial idea

was to plan information-gathering patrols, taking an active learning approach to gather data

where the predictive model was most uncertain. However, conservation experts pointed out

in our discussions that patrollers could not afford to spend time purely gathering data; they

must prioritize preventing illegal poaching, logging, and fishing in the short-term. These

priorities inspired dual-mandate patrols and guided our project, particularly our focus on

minimizing short-term regret as well as long-term regret. We emphasize that project design

and scoping must be made in tandem with domain experts [Bondi et al., 2021].

26



Evaluate with self-contained experiments. Extended discussions with park rangers made

us aware of how much patrols may change over time. First, changes in funding and support

may drastically alter patrolling resources; the number of park rangers in SWS in 2018 is over

double that of 2016. Second, park rangers must be sensitive to real-time changes in the illegal

market. For example, illegal logging rampantly increased in a nearby park in March, so park

rangers from SWS were redirected there to provide backup, reducing the sources inside the

park. These examples emphasize the importance of conducting self-contained experiments

when evaluating model performance.

Real-world deployment is necessary for effective technology transfer. Park rangers are

motivated by positive conservation outcomes, not by improvements in AUC. We were thrilled

that after two months in SWS, our partners at WWF were enthused by the results and eager

to deploy in other parks around the world, which was a critical impetus for the PAWS

integration with SMART.

Quality engineering is essential to large-scale deployment. This often cannot be done by

academics. A critical component of our integration with SMART has been a partnership with

Microsoft AI for Earth, who has provided engineering support along with cloud computing

resources. The task of developing production-level software is beyond what academics have

capacity (or training) for. Industry partnerships may be helpful here.

Limited data inspire research directions to close the gap. These continued partnerships

uncover new research directions as well. One challenge for under-resourced parks is that

PAWS requires geospatial data about the land, such as rivers, roads, land cover, and animal

density. During initial testing of PAWS with SMART, some park managers were getting

nonsensical predictions — but it turns out they were trying to make predictions with just

a single feature: park boundary. Parks without GIS specialists may not have additional

predictive features. To remedy this data deficiency, we leverage publicly available remote

sensing data, which provide global imagery across time [Guo et al., 2020]. In this case, our

close partnership with conservation NGOs and active role in the deployment phase enabled
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us to identify a key gap in making this work scalable to resource-constrained parks.

10 Conclusion

Overall, our PAWS project demonstrates an end-to-end pipeline to develop effective algo-

rithms for wildlife conservation by assisting rangers with patrol planning. We describe three

main technical thrusts, each of increasing complexity (supervised learning, online learning,

robust reinforcement learning), which are each grounded in urgent real-world challenges

in conservation. We present results from field tests that demonstrate the effectiveness of

PAWS on the ground, leading to large-scale deployment via integration with established

conservation software SMART. In our lessons learned, we share insights from years of close

collaborations with conservation practitioners.

Along the way, we demonstrate that real-world impact does not preclude technical nov-

elty. Among our key contributions is LIZARD, an integrated algorithm for online learning

in green security domains: on top of achieving theoretical no-regret, we also demonstrate

improved short-term performance empirically, increasing the usefulness of this approach in

practice—particularly in high-stakes environments where we cannot compromise short-term

reward. These results validate our approach of treating real-world conditions not as con-

straints but rather as useful features that lead to faster convergence.

We hope that this project serves as an example that interdisciplinary collaborations, par-

ticularly between researchers and practitioners, offer a trove of inspiration for novel research

questions. The process is often laborious requiring additional challenges with communica-

tion, implementation, and understanding existing problems in other fields, but the benefits

and potential for impact are innumerable.

We wish to close by stating that our work is intended to serve as an assistive technology,

helping rangers identify potentially snare-laden regions they otherwise might have missed,

given that these parks can be up to thousands of square kilometers and rangers can only
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patrol a small number of regions at each timestep. We do not intend this work to replace the

critical role that rangers play in conservation management; no AI/OR tool could substitute

for the complex skills and domain insights that rangers and park managers have to plan and

conduct patrols.
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